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Abstract. A lattice gas on the body-centred cubic lattice containing a pair of enantiomers
is studied for a domain of orientation-dependent interactions in which the ground-state
configurations are infinitely degenerate, each containing a racemic mixture of enantiomers. A
finite number of these configurations are dominant, meaning they have a maximum number
of lowest-energy excitations. An extension of the Pirogov–Sinai theory of phase transitions
due to Bricmont and Slawny is used to show that the low-temperature phases for this domain
of interactions have the structure of the dominant ground-state configurations, together with a
number of defects or excitations. This is the first proof of the existence of racemic phases at
low temperatures in a lattice model.

1. Introduction

A molecule is said to be chiral if it has the property of being nonsuperimposable upon
its mirror image. A chiral molecule and its nonsuperimposable mirror image are called
enantiomorphs,d and l, and together they constitute an enantiomeric pair. An equal (50–
50) mixture of two enantiomorphs is called a racemic mixture.

Living systems are very sensitive to the enantiomeric type of a chiral molecule; in fact,
only one of the two enantiomorphs of chiral amino acids and sugars are actually present
in an organism. The pharmaceutical industry is very much involved in the production of
enantiomorphs [1].

The spontaneous phase separation of a racemic mixture of enantiomorphs into
enantiomerically pured and l crystals was first accomplished in 1848 by Pasteur [2]. The
great majority of racemic mixtures, however, form racemic crystals and do not undergo
enantiomeric phase separation.

In 1985 Huckabyet al [3] published the first proof of the existence of enantiomeric
phase separation in a model system. They introduced a two-dimensional lattice gas model
[3–5] in which the two enantiomorphs of a tetrahedral molecule, consisting of a carbon
atom bonded to four different groups, can occupy the sites of a triangular lattice such that
a certain one of the groups points away from the plane of the lattice, the other three groups
pointing toward neighbouring lattice sites. For intermolecular interactions such as those
present between the zwitterion forms of an amino acid, they proved that a racemic mixture
will undergo enantiomeric phase separation at sufficiently low temperature and sufficiently
large chemical potential. Examples of enantiomeric phase separation in two dimensions
have recently been observed on the surfaces of water [6, 7], graphite [8], and mica [9].

The phenomenon of chiral discrimination, both heterochiral discrimination which
favours a racemic mixture, and homochiral discrimination, favouring enantiomeric
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Figure 1. An enantiomeric pair of molecules,d andl, consisting of a molecule C(AB)2 together
with its nonsuperimposable mirror image.
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Figure 2. Illustration of the bcc lattice with the molecule C(AB)2 at a site. The octahedron and
its translates are used in the construction of them-potential.

separation, was studied in 1988 by Andelman and de Gennes [10] and again in 1989 by
Andelman [11] using a model for a two-dimensional Langmuir–Blodgett film. As in the
model considered earlier by Huckabyet al [3, 4], the molecules in their model consist of
a carbon atom bonded to four different groups, with one group, here a hydrocarbon chain,
pointing away from the water surface. The other three groups are on the water surface, with
two groups on one molecule interacting with two groups on a neighbouring molecule. They
found that some types of interactions favour homochiral discrimination, and other types of
interactions favour heterochiral discrimination.

In order to study both enantiomeric phase separation and the formation of racemic
crystals in three dimensions, in 1994 Huckabyet al [12] introduced a three-dimensional
lattice gas model containing the two enantiomorphs having the molecular structure C(AB)2,
where C is a carbon atom tetrahedrally bonded to each end of an AB group (see figure 1).
A molecule in the model can occupy the sites of a body-centred cubic (bcc) lattice in any
of the 12 orientations in which the bonds from C to A and B point toward neighbouring
sites (see figure 2).

In section 2 the orientation-dependent intermolecular interactions are defined for the
model, and the structures of the various ground-state configurations are described. For one
domain of interaction parameters and chemical potential, described in section 2, the model
has 24 ground-state configurations, in which every site is occupied by a molecule of the same
enantiomeric type,d or l, and in which every molecule has the same molecular orientation.
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In [12] the Pirogov–Sinai theory [13, 14] was used to prove that the low-temperature phases
in this domain, except for defects, have the same structure as the enantiomerically pure
ground-state configurations. The model thus exhibits enantiomeric phase separation in that
domain of interaction parameters.

For another domain of interaction parameters and chemical potential, the ground-state
configurations are infinitely degenerate, each such configuration having alayered structure,
each layer consisting of an ordered racemic mixture ofd andl enantiomorphs (see figure 4).
Since the ground states are infinitely degenerate, the Pirogov–Sinai theory [13, 14] cannot be
used to determine the structure of the low-temperature phases in this domain of parameters.
In the present paper we use an extension of the Pirogov–Sinai theory due to Bricmont and
Slawny [15] to determine the structure of the racemic phases which occur at low temperature
in this domain.

In section 3 we show that a finite number of the ground-state configurations in this
domain aredominant, in that they can have a maximum number of lowest-energy excitations.
Moreover, each (simply connected) excitation of a ground state in this domain is shown to
satisfy aregularity condition, in that the excitation energy goes to infinity as the size of the
excitation extends to infinity. In addition, any configurationξ∗ containing an excitation is
shown to have aretouch property, meaning that associated withξ ∗ is a unique configuration
ξ which differs fromξ ∗ only in that the excitation is replaced by a local configuration of
lowest energy. Since the ground-state configurations in this domain have a layered structure
and a finite number of them are dominant, and since the excitations satisfy a regularity
condition and have a retouch property, then the Bricmont–Slawny theory [15] can be used
to prove that in this domain of the interaction parameters, the low-temperature phases,
except for excitations, have the structure of the dominant ground-state configurations.

Thus, in the present paper we have used the Bricmont–Slawny theory to obtain the
first proof of the existence of ordered racemic phases in a model system, and in so doing
we have demonstrated that the theory can be successfully applied to models having many
orientational states and several interaction parameters. In addition to a number of models
considered by Bricmont and Slawny [15], the theory has also been used to aid in the
elucidation of the low-temperature phase diagram of a spin-1 model of microemulsions
[16].

2. The model

In [12] the present model was introduced, and the structure of the ground-state configurations
in each of two domains of the interaction parameters was derived. In this section we define
the interactions in the model and give a description of the structure of the ground-state
configurations in these two domains. This description is given in a fashion which will be
useful in section 3 for demonstrating that the model in one domain satisfies the special
conditions required in order to use the Bricmont–Slawny theory [15].

We consider a lattice gas on the bcc lattice in which each lattice site can be either
vacant or occupied by one of the two enantiomorphs,d or l, having the structure C(AB)2

as illustrated in figure 1. If a site is occupied by a molecule, the central C atom is at the
site and the four bonds from C to groups A and B point toward neighbouring sites (see
figure 2).

We consider the case in which the overall system contains equal numbers of the two
enantiomorphs. Then, due to symmetry of the phases present at equilibrium, the chemical
potentials ofd andl molecules are equal in all phases,µd = µl ≡ µ. A molecule at a given
site is characterized by the orientation of its X groups (X= A,B) and by its enantiomeric
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Figure 3. A given orientation for the molecule C(AB)2 consists in placing the groups A, A,
B, and B near four of the corners of a cube. The orientation in (a) and its six permutations
are said to be in the same ‘CX-bond orientation’ and the ones in (b) are in the other CX-bond
orientation.

form (d or l). There are exactly 12 possible ‘X-group orientations’, hereafter called simply
‘orientations’. Six of them are in one ‘CX-bond orientation’, i.e. their CX bonds (X= A,B)
can be superimposed by translation regardless of the A or B nature of the ends, and the
other six are in the other CX-bond orientation (see figure 3). Thus a configuration of a
molecule at sitei is specified by

ξi ≡ (θ, eθ )i (1)

whereθ is its orientation, i.e.θ ∈ {θ(1), θ (2), . . . , θ (6), θ̄ (1), θ̄ (2), . . . , θ̄ (6)} and eθ specifies
the enantiomeric form:eθ ∈ {d, l}. Thus there are 25 different configurations possible at a
lattice site, including the vacancy.

The Hamiltonian for the configurationξ = {ξl} (l runs over the sites of the bcc lattice)
has the form

H(ξ) =
∑
i,j

Ei,j (ξ)− µN(ξ) (2)

whereN(ξ) is the total number of molecules, andEi,j (ξ) = E(ξi, ξj ) is the intermolecular
pair-interaction energy between a molecule at sitei with configurationξi and a molecule at
site j with configurationξj .

The model incorporates physically realistic pair interactions between first- and second-
neighbour molecules. The interaction energies depend on the orientations and the types of
the pair of molecules. As is the case in many models containing molecules with realistic
molecular shapes, an asymmetry in the interaction results because of the asymmetry of the
molecular shapes. In particular, if molecules ati and j are switched in configurationsξ
andξ ′ (ξi = ξ ′j andξj = ξ ′i ), thenEi,j (ξ) is not necessarily equal toEi,j (ξ ′).

Due to extreme steric repulsion, we assume that a pair of first-neighbour molecules are
excluded from being in relative orientations in which each molecule points a group (A or
B) toward a group of the other molecule. Before defining the other pair interactions, it
is helpful to first define the ‘AB-bond line’ of a molecule. The AB-bond line is the line
bisecting the two AB bonds in the molecule (see figure 4).

Let X and Y refer to A or B groups on neighbouring molecules, let a subscript 1 or 2
refer to whether the pair of molecules are first- or second-neighbours, and let the absence
or presence of a prime (′) indicate, respectively, whether the molecules are in the same or
opposite CX-bond orientations. The pair interaction energyEi,j between molecules on sites
i and j is then the sum of the interactions between the closest pairs of X and Y groups
(each such interaction denoted asεXY

1 , εXY
2 , εXY ′

1 or εXY ′
2 ), plus the steric repulsion between
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Figure 4. A ground-state configuration for three planes. The AB bond is illustrated for a
molecule. The two enantiomersd and l have perpendicular AB-bond lines. The front plane is
in the configurationP while the plane in the rear is in the configurationP̄ .

the closest pair of AB bonds (equal toγ1 or γ ′1 if the first-neighbour pair have perpendicular
AB-bond lines, toγ2 or γ ′2 if the second-neighbour pair have colinear AB-bond lines, and
to 0 otherwise).

We shall assume that the AB bond is polar, i.e. that the interactions between X and Y
groups are electrostatic, given as

ε
AB(′)
i = −εAA(′)

i = −εBB(′)
i = ε(′)i < 0 (3)

wherei = 1 or 2, and (′) indicates either the absence or presence of a prime. The model
thus contains the nine parametersε1, ε2, ε

′
1, ε
′
2, γ1, γ2, γ

′
1, γ

′
2 andµ. For sufficiently largeµ,

the ground-state configurations have every site occupied by a molecule, all the molecules
being in the same CX-bond orientation [12].

Consider the setO of lattice translations of the octahedrono illustrated in figure 2.
Since the Hamiltonian in equation (2) is a sum of terms associated with each occupied site
and with each occupied first- or second-neighbour pair of sites, then each of these terms
can be partitioned equally among the octahedra inO which contain the respective site or
pair of sites. This partition defines the Hamiltonian restricted to an octahedrono, Ho(ξ).
The Hamiltonian can then be written as a sum of restricted Hamiltonians

H(ξ) =
∑
o∈O

Ho(ξ). (4)

For the domainD of interactions in whichε1 < ε2 < 0, γ1, γ2 > 0 andµ is sufficiently
large, it has been shown [12] that

min
ξ
Ho(ξ) = H0 = 4ε1+ 4ε2+min{γ2, 2γ1} − µ (5)

and that configurations exist inD in which every octahedron inO has a restricted
Hamiltonian equal toH0. The restricted Hamiltonian thus constitutes anm-potential in
D [17].

The structure of the ground-state configurations inD can be described as follows. First,
imagine the molecules without AB bonds. There are then 12 orientations possible. In a
ground state inD, every site is occupied by a molecule in the same orientation.
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In D, if 0 < γ2 < 2γ1, the AB bonds are such that every molecule in a ground-state
configuration is of the same enantiomeric type,d or l, and in the same molecular orientation.
There are thus 24 ground-state configurations, and the Pirogov–Sinai [13, 14, 18] theory is
sufficient to prove that multiple equilibrium states exist at sufficiently low temperatures,
these states corresponding tod-rich or l-rich phases which are small perturbations of the
ground states. Enantiomeric phase separation thus occurs at low temperature in this domain
of interactions [12].

In D, if 0 < 2γ1 < γ2, in addition to all the molecules in a ground-state configuration
being in the same one of the 12 possible orientations, each of these configurations contains
a racemic mixture ofd and l molecules. A ‘characteristic direction’ appears in each
ground-state configuration. The AB-bond lines of all the molecules are perpendicular to
this direction and are contained in one of the three sets of parallel planes (200), (020) or
(002). Within each plane (see figure 4), molecules which are second neighbours are of
opposite enantiomeric type,d or l, and have perpendicular AB-bond lines. For a given
orientation of all the molecules in a ground-state configuration, there are thus two possible
configurations of AB-bond lines in a plane,P and P̄ , related by the symmetryd 
 l. All
of the ground-state configurations can be obtained from the 12 configurations [PPPP . . .]i ,
in which all of the parallel planes (which are perpendicular to the characteristic direction)
are in theP configuration, by simply changing one or more planes fromP to P̄ . The index
i runs over the 12 molecular orientations.

If there arep planes in the lattice there will be 12×2p ground-state configurations, each
corresponding to a racemic mixture of molecules. Hence, even if the number of ground
states is infinite (2p →∞ whenp →∞) there is no residual entropy. As we shall show
in section 3, the model in this domain satisfies the conditions of the Bricmont–Slawny [15]
extension of the Pirogov–Sinai theory, and there are a finite number of racemic phases at
sufficiently low temperatures.

3. Existence of racemic phases at low temperatures

In a domain of parameters in which there are an infinite number of ground states, an
extension of the Pirogov–Sinai theory due to Bricmont and Slawny [15] can be used to
determine the structure of the low-temperature phases if the ground states and excitations
satisfy certain special conditions. First, the ground states must have alayered structurein
that they can all be obtained from a finite number of ground states by simply changing
the configurations in a set of planes. Second, the number ofdominant ground states, those
which allow the maximum number of lowest-energy excitations, must be finite. Third, the
excitations must satisfy aregularity condition in that the amount by which the energy of
an excitation exceeds that of a ground state must go to infinity as the size of the excitation
extends to infinity. Fourth, a configuration containing an excitation must have aretouch
property in that the excitation can be replaced by a unique local configuration of lowest
energy. If these four conditions are satisfied, then theorem A of [15] ensures that the low-
temperature phases in this domain have the structure of the dominant ground states, together
with some excitations.

For the domainDR ⊂ D in which ε1 < ε2 < 0, 0< 2γ1 < γ2, andµ is sufficiently
large, the ground states, described in section 2, are infinitely degenerate. Any ground-state
configuration inDR can be obtained by simply changing all moleculesd 
 l in a set of
planes starting from the ground-state configurations [PPPP . . .]i , wherei refers to one of
the 12 molecular orientations. The ground-state configurations inDR thus have thelayered
structureassumed in the Bricmont–Slawny theory.
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Since the Hamiltonian restricted to an octahedron forms anm-potential inDR, the
energy of each octahedron in an excitation exceeds that of each octahedron in a ground-
state configuration. If an excitation extends to infinity, it must either do so by extending to
an infinite number of planes or by having an infinite perimeter in at least one plane. Either
way, there are an infinite number of octahedra in the excitation and a resulting infinite
energy. Hence theregularity condition is satisfied.

The local exterior of an excitation within a plane coincides necessarily with a ground
state,P or P̄ , restricted to that plane. Thus, an excitation can be uniquely replaced in each
plane by the extension of the local ground-state configuration at its exterior. The excitations
thus have theretouch property.

We now proceed to determine the structure of thedominantground-state configurations,
those which afford a maximum number of lowest-energy excitations. Because of the local
symmetry in the layers of the ground-state configurations, it is clear that any discriminating
excitation, meaning one which occurs in a different number of ways in some ground-state
configurations than in the others, must necessarily extend to at least three parallel planes
of the configuration. As illustrated in figure 5, such excitations must extend from plane
I to plane III. Thus to determine which ground states are dominant, we shall attempt to
determine which sequence,P �P or P � P̄ (the� represents the middle plane which may
be in either theP or P̄ configuration), has more elementary excitations with lower energy.

Since any excitation involving only a single molecule cannot extend to three planes,
a discriminating excitation must involve two or more molecules which are first or second
neighbours. Excitations involving two molecules which extend from plane I to plane III are
illustrated in figure 5(a) for P �P and in in figure 5(a′) for P � P̄ . These excitations have
the same energy and the same counting and therefore do not differentiate betweenP � P
andP � P̄ . In fact, no differentiation betweenP �P andP � P̄ occurs due to excitations
involving only two molecules.

For the case of excitations involving three molecules, the excitation ofP � P in
figure 5(b) differs in energy from the corresponding one involving molecules at the same
sites inP � P̄ and, at first glance, appears to effect a differentiation; however, the excitation
in figure 5(b′) of P � P̄ has the same energy and the same counting. Hence, no net
differentiation results because of these excitations.

There are, however, excitations involving three molecules which do differentiate
betweenP � P and P � P̄ . The one with the lowest energy, illustated in figure 5(c),
has the energyE∗3 = 3γ2 + 6γ1 − 16ε1 − 12ε2 and occurs inP � P but not inP � P̄ .
(The corresponding excitation involving molecules at the same sites inP � P̄ is illustrated
in figure 5(c′) and exceedsE∗3 in energy by 2γ1.) Since this excitation forms a ‘loop’, a
cancellation of its discriminating effect by a similar excitation inP � P̄ , as occurred with
the excitations of figure 5(b) and figure 5(b′), does not occur.

The differentiating excitation with lowest energy which includes four molecules contains
a loop and is illustrated in figure 5(d). It occurs inP � P but not inP � P̄ and has the
excitation energyE∗4 = 8γ2−8γ1. (The corresponding excitation involving molecules at the
same sites inP�P̄ exceedsE∗4 in energy by 8γ1.) We also checked the excitations involving
five molecules, and none with energy lower than min{E∗3, E∗4} causes a differentiation
betweenP � P andP � P̄ .

If no other excitations with energy less than or equal to min{E∗3, E∗4} occur which
differentiate betweenP � P and P � P̄ , then the 48 ground-state configurationsGR =
{[PPPP . . .]i , [P̄ P̄ P̄ P̄ . . .]i , [P P̄P P̄ . . .]i , [P̄ P P̄P . . .]i; i = 1 − 12} are the dominant
ground-state configurations.

As in the case with other models [15, 16], proving that these are in fact the lowest-energy
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Figure 5. Illustration of the first-order excitations for the sequencesP � P andP � P̄ . The
AB-bond lines in the excitation are represented by heavy short lines. A grey AB-bond line
indicates the initial position before the excitation.

excitations which occur as excitations in more ways in some ground states than in others
has not been accomplished, for it has not been ruled out that some excitations involving six
or more molecules could have lower energy than min{E∗3, E∗4} and occur as excitations in
some ground states in more ways than in other ground states. This is unlikely, however, for
since the Hamiltonian restricted to an octahedron constitutes anm-potential, the excitation
energy generally increases with the size of the excitation. It is interesting to point out that
the dominant ground states we found are the most symmetric among the infinite set of
ground states, which is also the case for other models studied by this technique [15, 16]. A
heuristic explanation would be the following: since in general an excitation has a ‘shape’,
it will usually have more ways to occur in a perfectly symmetric configuration than in one
with lesser symmetry.

We thus conclude that the 48 configurations inGR are the dominant ground-state
configurations. WithinGR, the 24 configurations [PPPP . . .]i and [P̄ P̄ P̄ P̄ . . .]i are
related to a single configurationR by physical rotations and translations; likewise, the 24
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Figure 6. Low-temperature phase diagram of the three-dimensional enantiomeric model.

configurations [P P̄P P̄ . . .]i and [P̄ P P̄P . . .]i in GR are related by rotations and translations
to a single configuration̄R in which the molecules are in the same orientation as those in
R. The configurationR̄ can be converted toR by a 90◦ rotation about an axis in the
characteristic direction, followed by a reflection in a plane containing the axis. Thus, all
the configurations inGR are related by symmetries of the Hamiltonian.

Since the ground-state configurations have the layered structure, the excitations satisfy
the regularity condition and have the retouch property, and there are a finite number of
symmetry-related dominant ground-state configurations, then using theorem A of [15], we
conclude that at sufficiently large chemical potential the low-temperature phases of the three-
dimensional enantiomeric model in the racemic regime (2γ1 < γ2) are small perturbations
of the 48 ground-state configurations inGR.

It is interesting to note that if 2γ1 < γ2, there are two physically different phases at low
temperatures which are perturbations of the ground-state configurationsR and R̄, just as
there are two physically different phases, oned rich and onel rich, at low temperatures if
2γ1 > γ2. Thed-rich andl-rich phases are small perturbations of two ground states,D and
L, which are related by symmetry in the same way as areR and R̄. The phase diagram is
illustrated in figure 6.
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